Functional interaction of CCR4-NOT proteins with TATAA-binding protein (TBP) and its associated factors in yeast.

نویسندگان

  • V Badarinarayana
  • Y C Chiang
  • C L Denis
چکیده

The CCR4-NOT transcriptional regulatory complex affects expression of a number of genes both positively and negatively. We report here that components of the CCR4-NOT complex functionally and physically interact with TBP and TBP-associated factors. First, mutations in CCR4-NOT components suppressed the his4-912delta insertion in a manner similar to that observed for the defective TBP allele spt15-122. Second, using modified HIS3 promoter derivatives containing specific mutations within the TATA sequence, we found that the NOT proteins were general repressors that disrupt TBP function irrespective of the DNA sequence. Third, increasing the dosage of NOT1 specifically inhibited the ability of spt15-122 to suppress the his4-912delta insertion but did not affect the Spt- phenotype of spt3 or spt10 at this locus. Fourth, spt3, spt8, and spt15-21 alleles (all involved in affecting interaction of SPT3 with TBP) suppressed ccr4 and caf1 defects. Finally, we show that NOT2 and NOT5 can be immunoprecipitated by TBP. NOT5 was subsequently shown to associate with TBP and TAFs and this association was dependent on the integrity of TFIID. These genetic and physical interactions indicate that one role of the CCR4-NOT proteins is to inhibit functional TBP-DNA interactions, perhaps by interacting with and modulating the function of TFIID.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic evidence supports a role for the yeast CCR4-NOT complex in transcriptional elongation.

The CCR4-NOT complex is involved in the regulation of gene expression both positively and negatively. The repressive effects of the complex appear to result in part from restricting TBP access to noncanonical TATAA binding sites presumably through interaction with multiple TAF proteins. We provide here genetic evidence that the CCR4-NOT complex also plays a role in transcriptional elongation. F...

متن کامل

The yeast TATA-binding protein (TBP) core domain assembles with human TBP-associated factors into a functional TFIID complex.

In mammalian and Drosophila cells, the central RNA polymerase II general transcription factor TFIID is a multisubunit complex containing the TATA-binding protein (TBP) and TBP-associated factors (TAFs) bound to the conserved TBP carboxy-terminal core domain. TBP also associates with alternative TAFs in these cells to form general transcription factors required for initiation by RNA polymerases ...

متن کامل

Genetic interactions between Nhp6 and Gcn5 with Mot1 and the Ccr4-Not complex that regulate binding of TATA-binding protein in Saccharomyces cerevisiae.

Our previous work suggests that the Nhp6 HMGB protein stimulates RNA polymerase II transcription via the TATA-binding protein TBP and that Nhp6 functions in the same functional pathway as the Gcn5 histone acetyltransferase. In this report we examine the genetic relationship between Nhp6 and Gcn5 with the Mot1 and Ccr4-Not complexes, both of which have been implicated in regulating DNA binding b...

متن کامل

Structural and functional characterization on the interaction of yeast TFIID subunit TAF1 with TATA-binding protein.

General transcription factor TFIID, consisting of TATA-binding protein (TBP) and TBP-associated factors (TAFs), plays a central role in both positive and negative regulation of transcription. The TAF N-terminal domain (TAND) of TAF1 has been shown to interact with TBP and to modulate the interaction of TBP with the TATA box, which is required for transcriptional initiation and activation of TAT...

متن کامل

Functional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay

Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 155 3  شماره 

صفحات  -

تاریخ انتشار 2000